
Query 1: Cards with Mid Price Above Average
π card_name, mid_price, set_name (
σ mid_price > γ AVG(mid_price) (price_tracker)
(price_tracker ⋈ card ⋈ card_set)
)

Query 2: Post-2020 Standard Legal Sets
π set_name, release_date (
σ release_date > '2020-01-01' ∧ legality_id ∈ π legality_id (σ standard=true (legality))
(card_set)
)

Query 3: Max Mid Price per Set
π set_name, card_name, mid_price (
card_set ⋈
(card ⋈ price_tracker) ⋈
γ set_id; MAX(mid_price)→max_price (price_tracker ⋈ card)
on set_id and mid_price = max_price
)

Query 4: Price Rank by Rarity
π card_name, rarity, mid_price, RANK() (
(card ⋈ price_tracker ⋈ rarity)
sort by rarity, mid_price DESC
)

RA Note: Window functions require sorting and partitioning which isn't native to RA. This is
approximated with sorting and sequence numbers.

Query 5: Release Order in Sets
π card_name, set_name, release_date, ROW_NUMBER() (
(card ⋈ card_set)
partition by set_id sort by release_date
)

Query 6: Price Tiers (Quartiles)
π card_name, mid_price, NTILE(4) (
(card ⋈ price_tracker)
sort by mid_price DESC
)

Query 7: Expanded Legal Cards
π card_name, set_name, expanded (
σ expanded=true (legality ⋈ card_set ⋈ card)
)

Query 8: Average HP >50 by Type
π type, AVG(hp) (

γ type; AVG(hp)→avg_hp (
type ⋈ card_type ⋈ card
)
)
σ avg_hp > 50

Query 9: Artists in "Base" Sets
π artist (
σ set_name LIKE '%Base%' (card ⋈ card_set)
)
remove duplicates

Query 10: Rarity Counts in "Evolving Skies"
π rarity, COUNT(card_id) (
γ rarity (
σ set_name='Evolving Skies' (rarity ⋈ card ⋈ card_set)
)
)

Query 11: Rarity Price Statistics
γ rarity; AVG(market_price), COUNT(*), STDDEV_SAMP(market_price) (
rarity ⋈ card ⋈ price_tracker
)

Query 12: Cards with Subtypes
π card_id, card_name (
σ EXISTS(σ card_id=c.card_id (card_subtype)) (card)
)

Query 13: Cards in Base Set or Jungle
π card_name (
σ set_name='Base Set' (card ⋈ card_set)
) ∪
π card_name (
σ set_name='Jungle' (card ⋈ card_set)
)

Query 14: Price Variance per Set
γ set_name; VAR_SAMP(market_price) (
card_set ⋈ card ⋈ price_tracker
)

Query 15: Sets with Avg High Price >50
π set_name (
σ avg_high_price >50 (
γ set_name; AVG(high_price)→avg_high_price (
card_set ⋈ card ⋈ price_tracker
)

)
)

Query 16: Unlimited Legal but Not Standard
π set_name (
card_set ⋈
(σ unlimited=true (legality)) - (σ standard=true (legality))
)

Query 17: Dual-Type Fire/Water Cards
π card_id, card_name (
(σ type='Fire' (type ⋈ card_type ⋈ card)) ∩
(σ type='Water' (type ⋈ card_type ⋈ card))
)

Query 18: Subtype Count per Card
π card_id, card_name, COUNT(subtype_id) (
card ⟕ card_subtype
)

Query 19: Avg Market Price per Set
π set_name, avg_market_price (
card_set ⋈
(γ set_id; AVG(market_price)→avg_market_price (card ⋈ price_tracker))
)

Query 20: Above-Average Priced Cards
π card_id, card_name, market_price, set_name (
σ market_price > (
γ set_id; AVG(market_price) (card ⋈ price_tracker)
)
(card ⋈ price_tracker ⋈ card_set)
)

Note: Relational Algebra uses Greek symbols in formal notation (π=projection, σ=selection,
⋈=join, γ=aggregation). Subqueries are represented using nested operations.​
​

Entities Attributes Constraints

Price_tracker

Tracks pricing information
for Pokémon cards.

price_tracker_id: BIGINT
(Auto-incremented unique identifier).

url: VARCHAR(200) (A string up to
200 characters, for the webpage URL).

card_id: VARCHAR(50) (A string up to
50 characters, references the card
table, must not be null).

updated_at: DATE (The date the
pricing information was last updated).

card_type: VARCHAR(200)
(Describes the card type).

low_price, mid_price, high_price,
market_price: DECIMAL(12, 2)
(Stores monetary values with 2 decimal
places).

price_tracker_id is the primary key.

card_id references the card table and
cannot be null.

Pokedex pokedex_id: INT (A unique integer
representing the Pokémon’s Pokedex
entry, must not be null).

pokedex_region: VARCHAR(50) (A
string representing the region of the
pokedex entry, must not be null).

pokedex_id is the primary key.

Pokedex_card

Links Pokémon cards to
Pokémon from the Pokedex.

card_id: VARCHAR(50) (References
the card table, must not be null).

pokedex_id: INT (References the
pokedex table, must not be null).

The combination of card_id and
pokedex_id is the primary key
(ensures each mapping is unique).

pokedex_id references the subtype
table and cannot be null.

card_id references the card table and
cannot be null.

Rarity

Defines rarity levels for
Pokémon cards.

rarity_id: INT (A unique identifier for
each rarity).

rarity: VARCHAR(50) (A string up to
50 characters, must be unique and not
null).

rarity_id is the primary key.

rarity must be unique and not null.

Subtype subtype_id: INT (A unique identifier
for each subtype). subtype_id is the primary key.

Categorizes cards into
specific subtypes (e.g.,

"EX", "VSTAR").

subtype: VARCHAR(100) (A unique
string up to 100 characters, must not
be null).

Card_subtype

Links Pokémon cards to
their respective subtype.

subtype_id: INT (References the
subtype table, must not be null).

card_id: VARCHAR(50) (References
the card table, must not be null).

The combination of card_id and
subtype_id is the primary key
(ensures each mapping is unique).

subtype_id references the subtype
table and cannot be null.

card_id references the card table and
cannot be null.

Supertype

Groups cards into broader
categories (e.g., "Pokémon",

"Trainer").

supertype_id: INT (A unique identifier
for each supertype).

supertype: VARCHAR(50) (A string up
to 50 characters, must be unique and
not null).

supertype_id is the primary key.

supertype must be unique and not
null.

Type

Defines elemental types for
cards (e.g., "Fire", "Water").

type_id: INT (A unique identifier for
each type).

type: VARCHAR(50) (A string up to 50
characters, must be unique and not
null).

type_id is the primary key.

type must be unique and not null.

Card_type

Links Pokémon cards to
their respective elemental

types.

card_type_id: BIGINT
(Auto-incremented unique identifier for
each record).

type_id: INT (References the type
table, must not be null).

card_id: VARCHAR(50) (References
the card table, must not be null).

card_type_id is the primary key.

type_id references the type table and
cannot be null.

card_id references the card table and
cannot be null.

Legality

Tracks whether cards or
sets are legal in specific

play formats.

legality_id: BIGINT (Auto-incremented
unique identifier).

unlimited: BOOLEAN (Indicates
legality in the Unlimited format, defaults
to false).

standard: BOOLEAN (Indicates
legality in the Standard format, defaults
to false).

expanded: BOOLEAN (Indicates
legality in the Expanded format,
defaults to false).

legality_id is the primary key.

Card_set

Organizes Pokémon cards
into sets (e.g., "Base Set",

"Sword & Shield").

set_id: VARCHAR(100) (Unique ID for
the set).

set_name: VARCHAR(150) (Name of
the set, must be unique and not null).

legality_id: BIGSERIAL (References
the legality table).

series: VARCHAR(150) (Name of the
series the set belongs to).

printed_total: INT (The number of
cards printed in the set).

total: INT (The total number of cards in
the set).

ptcgo_code: VARCHAR(50) (A unique
code for the Pokémon TCG Online,
optional).

release_date: DATE (The release date
of the set).

updated_at: DATE (The date the set
information was last updated).

symbol_img: VARCHAR(200) (URL
for the set symbol).

logo_img: VARCHAR(200) (URL for
the set logo).

set_id is the primary key.

set_name and ptcgo_code must be
unique.

Card

Contains all details about
individual Pokémon cards.

card_id: VARCHAR(50) (Unique
identifier for the card).

set_id: VARCHAR(100) (References
the card_set table, must not be null).

rarity_id: INT (References the rarity
table).

supertype_id: INT (References the
supertype table).

card_name: VARCHAR(100) (Name of
the card, must not be null).

number: VARCHAR(50) (Card number
within its set, must be unique).

artist: VARCHAR(100) (Name of the
artist who illustrated the card).

card_id is the primary key.

set_id, rarity_id, and supertype_id
are foreign keys.

number must be unique.

small_img: VARCHAR(200) (URL for
a small image of the card).

large_img: VARCHAR(200) (URL for a
large image of the card).

hp: INT (The card's hit points).

flavor_text: VARCHAR(500) (Optional
descriptive text for the card).

Relation Cardinality Participation
Constraint

Price_tracker ↔ card

Each entry in price_tracker
represents pricing data for a

specific card.

One-to-One
Each card can have at most
one entry in price_tracker
(pricing information is unique
to the card).

Each price_tracker record
must reference exactly one
card.

price_tracker.card_id: Mandatory
(Pricing must belong to a card).

card.card_id: Optional (A card may
not yet have pricing information).

pokedex ↔ card (via
pokedex_card)

A card can represent a
Pokémon species in the

Pokedex.

Many-to-Many
Many cards can reference
the same pokedex_id (e.g.,
multiple Pikachu cards).

Each pokedex entry may
reference more than one
card.

pokedex_card.card_id: Mandatory
(Every pokedex association must
belong to a valid card).

pokedex_card.pokedex_id:
Mandatory (Every pokedex
association must reference a pokedex
entry).

card ↔ card_set

Each card belongs to a
card_set.

Many-to-One
Many cards can belong to
the same card_set (e.g.,
multiple cards in the "Base
Set").

Each card must belong to
exactly one card_set.

card.set_id: Mandatory (Every card
must belong to a set).

card_set.set_id: Optional (Not all
sets may have cards initially).

card ↔ rarity

Each card has a rarity that
indicates its scarcity.

Many-to-One
Many cards can share the
same rarity (e.g., multiple
cards can be "Common").

Each card can reference
only one rarity.

card.rarity_id: Optional (Not all cards
have defined rarity, e.g., promo cards).

rarity.rarity_id: Optional (A rarity may
exist without any cards associated
initially).

card ↔ supertype

Each card has a supertype,
which categorizes it broadly

(e.g., Pokémon, Trainer,
Energy).

Many-to-One
Many cards can share the
same supertype.

Each card must have exactly
one supertype.

card.supertype_id: Mandatory (Every
card must have a supertype).

supertype.supertype_id: Optional (A
supertype can exist even if no cards
belong to it yet).

card ↔ type (via card_type)

A card can have one or
more types (e.g., Grass,

Fire).

Many-to-Many
A card can have multiple
types (e.g., dual-type
Pokémon).

A type can apply to multiple
cards (e.g., multiple Fire-type
Pokémon).

card_type.card_id: Mandatory (Every
type association must belong to a valid
card).

card_type.type_id: Mandatory (Every
type association must reference a valid
type).

subtype ↔ card (via
card_subtype)

A card can have one or
more subtypes (e.g., "EX",

"VSTAR").

Many-to-Many
A card can have multiple
subtypes.

A subtype can apply to
multiple cards.

card_subtype.card_id: Mandatory
(Each subtype must belong to a card).

card_subtype.subtype_id:
Mandatory (Each subtype must belong
to a valid subtype).

card_set ↔ legality

Each card_set may be legal
in specific play formats.

One-to-One
Each card_set has one
legality record.

Each legality record is tied to
only one card_set.

card_set.legality_id: Optional (Not all
sets have legal formats).

legality.legality_id: Optional (A
legality record may exist without
referencing a card set).

card ↔ legality (via
card_set)

Each card can also have
legality status (e.g., banned

in certain formats).

Many-to-One
Many cards can reference
the same legality record.

Each card can reference
only one legality record.

card.legality_id: Optional (Not all
cards have legality defined).

legality.legality_id: Optional (Legality
may exist without being tied to any
card).

price_tracker ↔ card_set
(via card)

A price_tracker entry
references cards that belong

to a specific set.

Many-to-One
Many price_tracker records
can reference the same
card_set.

Each price_tracker record
can only reference one
card_set.

price_tracker.card_id (and indirectly,
set_id): Mandatory (Each pricing entry
must belong to a set).

card_set.set_id: Optional (Not all
sets may yet have cards in the TCG).

Business Rules for the Pokémon TCG Database
The database is designed to manage information about Pokémon TCG entities for efficient
handling of card details, sets, types, and related information. The following are the major
business rules:

Cards and Their Attributes

●​ Card Uniqueness:
○​ One and only one card can exist in the database with the same card_id.
○​ Since every card belongs to only one set, for any card, the card_id and set_id

are unique.
●​ Mandatory Attributes:

○​ All cards must have a name, a set_id, and a supertype.
○​ All cards of Pokémon must be associated with a pokedex_card.

●​ Optional Attributes:
○​ The cards can have a rarity, artist, flavor_text, and legality.
○​ One card can have multiple subtypes or types.

Sets and Legalities
●​ Set-Card Relationship:

○​ One card is in exactly one set (set_id); one set may contain multiple cards.
●​ Legality Rules:

○​ Every set might provide its legality, including formats it is legal in, such as
Standard or Expanded.

○​ Every card can have a legality record; this would override any set-based
record.

●​ Validation Rule:
○​ A set can not be marked as legal for "Standard" if it does not have any cards

which match that format.

Rarity and Subtypes

●​ Rarity Management:
○​ The card can take one and only one rarity, eg. "Common" or "Rare".
○​ Rarities shall be predefined and unique in the rarity table.

●​ Subtype Flexibility:
○​ Cards may have multiple subtypes (eg. "EX", "VSTAR").
○​ Subtypes should match the supertype of the card:

■​ Pokémon card examples would include "EX" or "VSTAR".
■​ The subtypes can be "Supporter" and "Stadium" for trainer cards.

●​ Validation Rule:
○​ Subtype(s) of the card is as per the permitted subtype(s) of its type.

Pokémon and Types

●​ Pokédex Integration:
○​ The cards of the Pokémon have to link to a valid pokedex_card.
○​ Cards for Trainers or Energies should not have a reference to the

pokedex_card.
●​ Card Types (Elements):

○​ A card may have one or more types, including but not limited to Fire and
Water.

○​ Types shall be previously defined in the type table and linked to cards using
card_type.

●​ Validation Rule:
○​ A card may not have conflicting types-fire and water, for example-not foresaw

by the rules.

Pricing and TCGPlayer Integration

●​ Pricing Association:
○​ One price entry per card in the price_tracker table.
○​ Pricing needs to include low, mid, high, and market values.

●​ Data Update Rule:
○​ Pricing data must be updated periodically; the updated_at field must show the

time of last modification.

Relationships and Constraints
●​ Supertype and Subtype Exclusivity:

○​ Each card must have exactly one supertype.
○​ Subtypes must be consistent with the card’s supertype.

●​ Mandatory Relationships:
○​ Every card must belong to a set.
○​ Cards must reference a supertype, and Pokémon cards must reference the

Pokédex.
●​ Deletion Cascade:

○​ Deleting a card should automatically remove dependent records (e.g., pricing,
types).

Scalability and Data Integrity

●​ Adding New Data:
○​ New sets, types, subtypes, or rarities can be added without affecting already

existing cards.
○​ Additional promotional or exclusive cards can be included with unique

identifiers.
●​ Referential Integrity:

○​ Relationships between entities should have referential integrity, meaning
there should not be any card_type entry without valid card_id and type_id.

End-User and Gameplay Rules

●​ User Queries:
○​ This system allows searching cards by set, rarity, legality, or pricing.

●​ Format Compliance:
○​ Cards and sets must comply with the up-to-date format rules of Pokémon

TCG, for example, legality in Standard, Expanded.
●​ Visual Resources:

○​ Each card should have at least one associated image URL (image_url).
○​ Large images are preferred to be displayed. Small images are required.

Weak Entities and Multivalued Attributes in the Pokémon TCG Database

Weak Entities

card_type

●​ Definition: Maps the many-to-many relationship between card and subtype, allowing
a card to have multiple subtypes (e.g., "EX", "VSTAR").

●​ Justification:
○​ Composite Primary Key: Uses card_id (from card) and subtype_id (from

subtype) as its primary key.
○​ Existence Dependency: Entries in card_subtype cannot exist without a valid

card or subtype.
○​ Weakness: This table has no meaning independent of its parent entities.

pokedex_card

●​ Definition: Links a card to one or more regional Pokédex entries (e.g., Kanto, Johto).
●​ Justification:

○​ Composite Primary Key: Uses card_id (from card) and pokedex_id (from
pokedex).

○​ Existence Dependency: If a card or Pokédex entry is deleted, all associated
pokedex_card records become invalid.

Multivalued Attributes

A multivalued attribute may allow an entity for multiple values of a certain property.
Relational databases handle these through the process of normalization, though. The
following is the list of some multivalued attributes in this database along with their
normalized design:

Card types

●​ Original Attribute: A card can have multiple elemental types (e.g., Fire, Psychic).
●​ Normalization:

○​ card_type Table: Implements a many-to-many relationship between card and
type.

●​ Justification:
○​ Eliminates redundancy (no comma-separated types in the card table).
○​ Scalable for new types (e.g., "Darkness" or "Fairy").

Card subtypes

●​ Original Attribute: A card may have multiple subtypes (e.g., "EX", "VSTAR").
●​ Normalization:

○​ card_subtype Table: Links card to subtype entries.
●​ Justification:

○​ Avoids duplicating subtype strings across cards.
○​ Enforces referential integrity (all subtypes are predefined in subtype).

Pokedex regions

●​ Original Attribute: A card can appear in multiple regional Pokédexes.
●​ Normalization:

○​ pokedex_card Table: Maps cards to their associated Pokédex regions.
●​ Justification:

○​ Prevents storing lists of regions in the card table.
○​ Allows efficient querying (e.g., "Find all cards in the Galar Pokédex").

Why This Design is Appropriate

Redundancy Avoidance: Multivalued attributes (types, subtypes) are stored in normalized
junction tables, eliminating data duplication.

Scalability: Weak entities like card_subtype and pokedex_card allow seamless expansion
(e.g., adding new subtypes or regions).

Data Integrity: Foreign key constraints enforce that all entries in junction tables reference
valid parent records.

Query Efficiency: Simple joins retrieve all types/subtypes for a card (e.g., SELECT type
FROM type JOIN card_type ON ... WHERE card_id = 'xy1-1').

ER Diagram:​

Link for better resolution:
https://drive.google.com/file/d/14sIeeGjIzwe-hFmGqXNhffejebhGD1HO/view?usp=sharing

Business Rules for the Pokémon TCG Database
The database is designed to manage information about Pokémon TCG entities for efficient
handling of card details, sets, types, and related information. The following are the major
business rules:

Cards and Their Attributes

●​ Card Uniqueness:
○​ One and only one card can exist in the database with the same card_id.
○​ Since every card belongs to only one set, for any card, the card_id and set_id

are unique.
●​ Mandatory Attributes:

○​ All cards must have a name, a set_id, and a supertype.
○​ All cards of Pokémon must be associated with a pokedex_card.

●​ Optional Attributes:
○​ The cards can have a rarity, artist, flavor_text, and legality.
○​ One card can have multiple subtypes or types.

Sets and Legalities

●​ Set-Card Relationship:
○​ One card is in exactly one set (set_id); one set may contain multiple cards.

●​ Legality Rules:
○​ Every set might provide its legality, including formats it is legal in, such as

Standard or Expanded.
○​ Every card can have a legality record; this would override any set-based

record.
●​ Validation Rule:

○​ A set can not be marked as legal for "Standard" if it does not have any cards
which match that format.

https://drive.google.com/file/d/14sIeeGjIzwe-hFmGqXNhffejebhGD1HO/view?usp=sharing

Rarity and Subtypes

●​ Rarity Management:
○​ The card can take one and only one rarity, eg. "Common" or "Rare".
○​ Rarities shall be predefined and unique in the rarity table.

●​ Subtype Flexibility:
○​ Cards may have multiple subtypes (eg. "EX", "VSTAR").
○​ Subtypes should match the supertype of the card:

■​ Pokémon card examples would include "EX" or "VSTAR".
■​ The subtypes can be "Supporter" and "Stadium" for trainer cards.

●​ Validation Rule:
○​ Subtype(s) of the card is as per the permitted subtype(s) of its type.

Pokémon and Types

●​ Pokédex Integration:
○​ The cards of the Pokémon have to link to a valid pokedex_card.
○​ Cards for Trainers or Energies should not have a reference to the

pokedex_card.
●​ Card Types (Elements):

○​ A card may have one or more types, including but not limited to Fire and
Water.

○​ Types shall be previously defined in the type table and linked to cards using
card_type.

●​ Validation Rule:
○​ A card may not have conflicting types-fire and water, for example-not foresaw

by the rules.

Pricing and TCGPlayer Integration

●​ Pricing Association:
○​ One price entry per card in the price_tracker table.
○​ Pricing needs to include low, mid, high, and market values.

●​ Data Update Rule:
○​ Pricing data must be updated periodically; the updated_at field must show the

time of last modification.

Relationships and Constraints

●​ Supertype and Subtype Exclusivity:
○​ Each card must have exactly one supertype.
○​ Subtypes must be consistent with the card’s supertype.

●​ Mandatory Relationships:
○​ Every card must belong to a set.
○​ Cards must reference a supertype, and Pokémon cards must reference the

Pokédex.
●​ Deletion Cascade:

○​ Deleting a card should automatically remove dependent records (e.g., pricing,
types).

Scalability and Data Integrity

●​ Adding New Data:
○​ New sets, types, subtypes, or rarities can be added without affecting already

existing cards.
○​ Additional promotional or exclusive cards can be included with unique

identifiers.
●​ Referential Integrity:

○​ Relationships between entities should have referential integrity, meaning
there should not be any card_type entry without valid card_id and type_id.
This also applies to pokedex_card and card_subtype

End-User and Gameplay Rules

●​ User Queries:
○​ This system allows searching cards by set, rarity, legality, or pricing.

●​ Format Compliance:
○​ Cards and sets must comply with the up-to-date format rules of Pokémon

TCG, for example, legality in Standard, Expanded.
●​ Visual Resources:

○​ Each card should have at least one associated image URL (image_url).
○​ Large images are preferred to be displayed. Small images are required.

CREATE DATABASE IF NOT EXISTS PokeBase;

USE PokeBase;

CREATE TABLE legality (
 legality_id BIGINT AUTO_INCREMENT PRIMARY KEY,
 unlimited BOOLEAN,
 standard BOOLEAN,
 expanded BOOLEAN
);

CREATE TABLE supertype (
 supertype_id INT PRIMARY KEY,
 supertype VARCHAR(50) NOT NULL
);

CREATE TABLE rarity (
 rarity_id INT PRIMARY KEY,
 rarity VARCHAR(50) NOT NULL
);

CREATE TABLE type (
 type_id INT PRIMARY KEY,
 type VARCHAR(50) NOT NULL
);

CREATE TABLE card_set (
 set_id VARCHAR(100) PRIMARY KEY,
 set_name VARCHAR(150) NOT NULL,
 series VARCHAR(150) NOT NULL,
 printed_total INT NOT NULL,
 total INT NOT NULL,
 ptcgo_code VARCHAR(50),
 release_date DATE NOT NULL,
 updated_at DATE NOT NULL,
 symbol_img VARCHAR(200) NOT NULL,
 logo_img VARCHAR(200) NOT NULL,
 legality_id BIGINT NOT NULL,
 CONSTRAINT fk_legality
 FOREIGN KEY(legality_id)
 REFERENCES legality(legality_id)
);

CREATE TABLE card (
 card_id VARCHAR(50) PRIMARY KEY,
 card_name VARCHAR(100) NOT NULL,
 number VARCHAR(50) NOT NULL,
 artist VARCHAR(100),
 small_img VARCHAR(200) NOT NULL,
 large_img VARCHAR(200) NOT NULL,
 supertype_id INT NOT NULL,
 set_id VARCHAR(100) NOT NULL,
 rarity_id INT,
 hp INT,
 flavor_text VARCHAR(500),
 CONSTRAINT fk_supertype
 FOREIGN KEY(supertype_id)
 REFERENCES supertype(supertype_id),
 CONSTRAINT fk_set
 FOREIGN KEY(set_id)
 REFERENCES card_set(set_id),
 CONSTRAINT fk_rarity
 FOREIGN KEY(rarity_id)
 REFERENCES rarity(rarity_id)
);

CREATE TABLE pokedex (
 pokedex_id INT PRIMARY KEY,
 pokedex_region VARCHAR(50) NOT NULL
);

CREATE TABLE pokedex_card (
 card_id VARCHAR(50) NOT NULL REFERENCES card(card_id),
 pokedex_id INT NOT NULL REFERENCES pokedex(pokedex_id),
 PRIMARY KEY (card_id, pokedex_id)
);

CREATE TABLE price_tracker (
 price_tracker_id BIGINT AUTO_INCREMENT PRIMARY KEY,
 url VARCHAR(200) NOT NULL,
 updated_at DATE NOT NULL,
 card_type VARCHAR(200) NOT NULL,
 low_price DECIMAL(12, 2),
 mid_price DECIMAL(12, 2),
 high_price DECIMAL(12, 2),
 market_price DECIMAL(12, 2),
 card_id VARCHAR(50) NOT NULL,
 CONSTRAINT fk_card
 FOREIGN KEY(card_id)
 REFERENCES card(card_id)
);

CREATE TABLE card_type (
 card_type_id BIGINT AUTO_INCREMENT PRIMARY KEY,
 type_id INT,
 card_id VARCHAR(50) NOT NULL,
 CONSTRAINT fk_type_id
 FOREIGN KEY(type_id)
 REFERENCES `type`(type_id),
 CONSTRAINT fk_card_id
 FOREIGN KEY(card_id)
 REFERENCES card(card_id)
);

CREATE TABLE subtype (
 subtype_id INT AUTO_INCREMENT PRIMARY KEY,
 subtype_name VARCHAR(100) UNIQUE NOT NULL
);​
​
CREATE TABLE card_subtype (
 card_id VARCHAR(50) NOT NULL,
 subtype_id INT NOT NULL,
 PRIMARY KEY (card_id, subtype_id),
 FOREIGN KEY (card_id) REFERENCES card(card_id),
 FOREIGN KEY (subtype_id) REFERENCES subtype(subtype_id)
);

Refer to the Github for the code and installation instructions:
https://github.com/Great64/pokebase

Demonstration of application

Homepage:​

​
​
Search:​

https://github.com/Great64/pokebase

Filters:​

Custom Query Compatibility:​

Card Details:

​

​
Drop:​

​

​
​

Create:​

​

​
​

Populate:​

​

​

	Price_tracker
	Pokedex
	Pokedex_card
	Rarity
	Subtype
	Card_subtype
	
	Links Pokémon cards to their respective subtype.
	Supertype
	Type
	Card_type
	Legality
	Card_set
	Price_tracker ↔ card
	pokedex ↔ card (via pokedex_card)
	card ↔ card_set
	card ↔ rarity
	card ↔ supertype
	card ↔ type (via card_type)
	subtype ↔ card (via card_subtype)
	card_set ↔ legality
	card ↔ legality (via card_set)
	price_tracker ↔ card_set (via card)
	Business Rules for the Pokémon TCG Database
	
	Weak Entities and Multivalued Attributes in the Pokémon TCG Database
	Weak Entities
	Multivalued Attributes
	Why This Design is Appropriate

